(S 331, Fall 2024 Today: - Matroids - Stable lecture 10 (9/30) mitching Metroids (Part IV, Section 4.2) ast time: Minimum spanning tree (2021: Output spanning tree T (forest of makinal size) of minimum total weight f(T)= Z We - sort by weight Our sporosch: Greedy. - fake any edge that (Kruskol) forms no cycle

Admits 2 significant generalization!  
Let 
$$(I, (m.))$$
 be 2 set rystem  
independent base  
sets set  
 $I = (S_1, S_2, S_3, \dots, S_k)$   
 $(m) (m) (m) (m)$ 

e.g. Schedulins prollem

Say a set is independent if it has no overlaps

P.g. forests in 2 graph = graphic instroid



SJY J Set is interpendent if it has no cycle

Set system Satisfies heredity it: SCT, TEI  $\rightarrow$  SE I Pretty mild.

orzahi(

scheduling V



Aside Linear independence  
We say 
$$V \in \mathbb{R}^{n}$$
 is linear combination  
of  $\{2:3:ccm = A \text{ if } Ac = V$   
 $\begin{pmatrix} 1 & 1 & 1 \\ a_{1} & a_{2} & \cdots & a_{m} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{m} \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) \end{pmatrix} = V$   
 $(a_{1} + (a_{2} + \cdots + a_{m}) + (a_{2}$ 

What's the difference?  
(b, d) Unstable pow:  
b prefers 
$$d > \beta$$
 [bolknown  
d proters  $b > 2 a$  [bolknown]  
deal...  
ldea: fix instability (like inversions)  
lssue: cycles  
(a, d) (b, d) (b, d) (b, m) (c, d)  
(b, k)  $\rightarrow$  (a, k)  $\rightarrow$  (a, k)  
(c, m) (c, d) (a, d) (b, m)  
(a, m) (c, d) (a, d) (a, d)  
 $\rightarrow$  (b, k)  $\rightarrow$  (b, m)  
(a, m) (c, d) (a, d) (a, d)  
 $\rightarrow$  (b, k)  $\rightarrow$  (c, m)

$$\begin{array}{l} \underbrace{ \begin{array}{c} \text{Supley Styley Style} \\ \text{(Rescart motches, facility hins, etc.)} \\ \text{(Rescart motches, facility hins, etc.)} \\ \text{(Rescart motches, facility hins, etc.)} \\ \text{(Nobel Prize & Genomics, 2012)} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{Style Mytching ({A_3}_{aeco}, {J_a}_{aeco}): \\ \text{(Me } \emptyset, id = 1 tdech) \\ \text{(Me } \emptyset, id = 1 tdech) \\ \end{array} \\ \begin{array}{l} \text{(Me } \emptyset, id = 1 tdech) \\ \text{(Mile Humstched job d:} \\ \text{(aeco)} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{(If a unstched job d:} \\ \text{(If a unstched):} \\ \text{(If a unstched):} \\ \end{array} \\ \begin{array}{l} \text{(If a unstched):} \\ \begin{array}{l} \text{(Me } M \cup \{(a, d)\} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{(Jif a prefers h to p (unret match):} \\ \end{array} \\ \begin{array}{l} \text{(me } M \setminus \{(a, f)\} \cup \{(a, d)\} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{(g + t (l) respected)} \\ \end{array} \end{array} \end{array} \end{array}$$